

ARCADIS NETHERLANDS B.V. CARBON FOOTPRINT 2024

Board of Directors of Arcadis Nederland B.V., Arnhem

June 20th, 2025

Contact person

HESTHER ANSEMS
Corporate Sustainability Reporting
Manager

M +316 1142 3562

E hesther.ansems@arcadis.com

Arcadis Nederland B.V. P.O. Box 264 6814 CM Arnhem Nederland

Index

1	INTR	RODUCTION AND PRINCIPLES	4
	1.1	Scope	4
	1.2	Organizational boundaries	5
	1.3	Principles	6
	1.4	Uncertainties in the accuracy of results	6
2	ARC	ADIS NETHERLANDS B.V. 2024 CARBON FOOTPRINT	8
3	DIRE	ECT CO ₂ -EMISSIONS: SCOPE 1	11
	3.1	Emissions from building-related natural gas consumption	11
	3.2	Emissions from fossil fueled company owned vehicles (lease cars)	13
4	INDI	RECT CO ₂ -EMISSIONS FROM ENERGY GENERATON: SCOPE 2	15
	4.1	Emissions from building-related electricity consumption	15
	4.2	Emissions from electricity consumption by company owned vehicles	16
	4.3	Emissions from heat and cold consumption	17
5	ОТН	ER INDIRECT CO ₂ -EMISSIONS: SCOPE 3	18
	5.1	Emissions from private cars	18
	5.2	Emissions from plane travel	19
	5.3	Emissions from domestic public transport	21
	5.4	Emissions from international train travel	22
	5.5	Emissions from machines	22
	5.6	Other Influenceable Emissions (OIE's)	22
6	Podi	iction measures and progress	22

Appendix A Literature

Appendix B Further elaboration on methods and principles

Appendix C Overview of CO₂-PL requirements and fulfillment

1 INTRODUCTION AND PRINCIPLES

Arcadis Netherlands B.V. (hereinafter: ANL) has been compiling its CO₂ footprint biannually since 2010. Between 2010 and the current reporting year, 2024, the CO₂ footprint has decreased by **71,7%** due to careful planning and active efforts. Compared to the reference year 2019, our footprint in 2024 has decreased by **42,9%**. Compared to the previous year, 2023, our footprint has decreased by **4,8%**. In this report, we will further elaborate on our emissions per scope and activity and explain trends in increased or decreased emissions compared to the baseline (2019) and previous (2023) year. Firstly, in this chapter, we will briefly explain how the data for the carbon footprint was collected, categorized, and the principles applied. Detailed information on data collection can be found in Appendix B.

1.1 Scope

The energy consumption data of companies is divided into three scopes (scope 1, 2, and 3) for calculating a carbon footprint. The scopes are distinguished by the degree to which the company can influence these emissions. Figure 1 graphically represents the division between scope 1, 2, and 3.

- Scope 1 pertains to direct CO₂ emissions that ANL can directly influence. This includes its own facilities, machinery, and installations where emissions occur directly on-site. Example: ANL has direct influence over the purchase of company vehicles (leased vehicles) and the type of fuel they use. Therefore, leased vehicles running on fossil fuels are part of Scope 1 emissions.
- Scope 2 refers to indirect CO₂ emissions that ANL can indirectly influence, but where the emissions occur at a
 different location. Example: While ANL has direct influence over the type of leased vehicles provided, it is beyond
 our control whether colleagues charge their vehicles with green or gray electricity. Since the emissions related to
 electricity generation occur elsewhere (namely the power plant), the electricity consumption of leased vehicles is
 part of Scope 2 emissions. The same goes for district heating.
- Scope 3 involves indirect CO₂ emissions over which ANL has no or limited influence. To illustrate: ANL employees have the choice to meet their business mobility needs in various ways, such as using their private car. ANL is responsible for the emissions, but not for the choices made by our employees and the type of cars they drive.

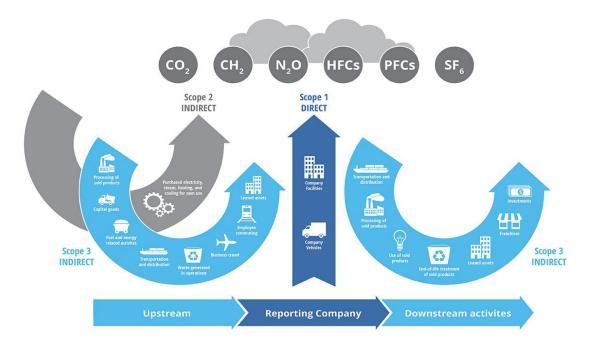


Figure 1: Division of energy streams between scope 1, 2 en 3

ANL reports ten emission sources in this carbon footprint, which are distributed across the scopes as follows1:

Table 1: Distribution of ANL's emission sources per scope

table 1. Blattibation of MAZ Confidence per coope					
Direct CO ₂ -emissions	Indirect CO ₂ -emissies from energy generation	Other indirect CO ₂ -emissions			
Scope 1	Scope 2	Scope 3			
Natural gas consumption	Electricity consumption	Energy consumption from business travel using private cars			
Fuel consumption of fossil- fueled leased vehicles	Electricity consumption of electric leased vehicles	Energy consumption from air travel			
	Heat and cold consumption	Energy consumption from business travel using public transport			
		Energy consumption from international train travel			
		Energy consumption from machinery			
		Other Influenceable Emissions (OBE's)2			

1.2 Organizational boundaries

This footprint pertains to the organization of Arcadis Nederland B.V. The choice for the starting entity was made based on the GHG Protocol. The "Control approach" was selected, whereby Arcadis Nederland B.V. takes responsibility for 100% of the emissions from business units over which it has operational control. In 2024, the Organizational Boundary of the entity Arcadis Nederland B.V. includes the following organizations, underlying entities, and locations:

Company name/entity, Address, Chamber of Commerce number, and City

- Arcadis Netherlands B.V., Piet Mondriaanlaan 26, 3812 GV 09036504 Amersfoort;
- Arcadis Netherlands B.V., Beaulieustraat 22, 6814 DV 09036504 Arnhem January until August 2024
- Arcadis Netherlands B.V.; Amsterdamseweg 13, 6814 CM 09036504 Arnhem from September 2024 onwards
- Arcadis Netherlands B.V., Stationsplein 10, 9401 LB 09036504 Assen;
- Arcadis Netherlands B.V., La Guardiaweg 36-66, 1043 DJ 09036504 Amsterdam;
- Arcadis Netherlands B.V., Fruitlaan 4a, 4462 EP 09036504 Goes;
- Arcadis Netherlands B.V., Mercatorplein 1, 5223 LL 09036504 's Hertogenbosch;
- Arcadis Netherlands B.V., Nieuwe Steen 3, 1625 HV 09036504 Hoorn;
- Arcadis Netherlands B.V., Lübeckplein 34, 8017 JS 09036504 Zwolle;
- Arcadis Netherlands B.V., Stationsplein 18d, 6221 BT 09036504 Maastricht;
- Arcadis Netherlands B.V., Weena 505, 3013 AL 09036504 Rotterdam;
- Arcadis Netherlands B.V., De Hanekampen 8, 9411XM 09036504 Beilen;
- Arcadis Netherlands B.V., Zendmastweg 11, 9405 CD Assen (Storage location, outside of KvK boundary); and
- Arcadis Netherlands B.V., Kleine Elst 8, 5246 JH Rosmalen (Storage location, outside of KvK boundary).

5

¹ The scope definition of ANL's carbon footprint is based on the scope diagram of the GHG Protocol Scope 3 Standard (GHP, 2018), which is part of NEN ISO 14064-1. This scope classification differs from the scope distribution used in the CO2 Performance Ladder handbook.

² Since the new handbook (4.0) was published in January 2025, we are also asked to report on other influenceable emissions (OBE's). These will be reported on briefly and separately at the end of this report, in Chapter 5.6

1.3 Principles

This section provides a brief, bullet-point overview of the principles applied. A detailed explanation can be found in Appendix B. Before data is collected for calculating the carbon footprint, the "system boundaries" are determined. These boundaries define the framework within which data collection takes place. For the 2024 carbon footprint, the following principles were applied:

- This carbon footprint was prepared in accordance with NEN ISO 14064-1;
- This carbon footprint pertains to the period from January 1, 2024, to December 31, 2024;
- To convert energy data (e.g., in kWh or liters of gasoline) into CO₂ emissions, ANL uses the most recent CO₂ emission factors of the reporting year in accordance with the CO₂ Performance Ladder 4.0 handbook (SKAO, 2025). These emission factors are sourced from: https://www.co2emissiefactoren.nl;
- The number of employees in the reporting year is based on the flow (the average) over the reporting year, with
 reference dates of December 31, 2023, and December 31, 2024. The numbers of employees and FTE on both
 dates (Dec 31st of 2023 and 2024) are first added up, and then divided by 2 to get the average over the full year
 period. This includes both ANL's own workforce and contemporary/contingent workers;
- The floor areas of the buildings are reported in accordance with the NEN 2580 methodology;
- The reference year used to compare the results of the current reporting year (2024) is 2019. The initial baseline year is 2010, with comparisons also drawn to this year in the report;
- The method for generating energy consumption data is explained in detail in Appendix B;
- Refrigerants and cooling systems fall under Scope 1. In this carbon footprint, the impact of refrigerant leakage into
 the atmosphere has not been included. However, it has been established that ANL does not use the harmful R22
 refrigerant and that the organization complies with legal regulations regarding the use of refrigerants. The electricity
 consumption of the cooling systems, however, has been included;
- Finally, it is important to note the following changes to our locations:
 - The OverMorgen office has been disregarded in February 2024; and
 - Our Arnhem office relocated from Beaulieustraat 22 in Arnhem to the Amsterdamseweg 13 in Arnhem in September 2024.

1.4 Uncertainties in the accuracy of results

The presented results should be interpreted with a small margin of uncertainty due to several factors:

- For some locations of ANL, measurement data is not available for the full period from January 1, 2024, to December 31, 2024. Only at the single-tenant (ST) offices real-time insight into our performance is available;
- In circumstances where we rely on data provided by third parties, we are not always able to receive meter readings from the exact dates of January 1 and December 31 of the year if we were provided with meter values at all. This has proven to be particularly challenging for the year 2024. Fortunately, we purchase 100% green electricity, so it doesn't matter much in terms of emissions. This data issue has been flagged and corrective action has been taken (such as the agreement that ISS, our new facility management, will be responsible for this part of the data collection). Missing data is corrected in retrospective as much as possible.
- To calculate meter readings for the actual and precise period of January 1 to December 31, estimations were made using degree days (for gas or heating consumption), sun hours (for solar panel output), or the number of days (for electricity readings) to approximate the consumption/production over the entire period.
- Since we only have insight into the energy source for charging (lease) cars at our offices with charging stations, the emission factor "electricity: source unknown" was used to calculate the emissions from electric vehicles.
- Additionally, no invoices or reliable measurement data were available for the storage locations at Assen
 Zendmastweg and Rosmalen. In these cases, like previous years, assumptions about natural gas and/or energy
 consumption were made based on invoices from previous years, adjusted using degree days. These are small
 locations that are under consideration for decommissioning.
- The OverMorgen office was disregarded in February 2024. Energy data is not available for the first month of the year and the office has been removed from the 2024 inventory and report. It has been assumed that this energy

- use for the first month has been negligible due to the move and the fact that these colleagues already started working in our Amersfoort before the move.
- For international travel, data has been collected since 2023 by Arcadis Global B.V. via ThrustCarbon and communicated to ANL. Following our own analysis of this data, we found out that in 2023 we have been attributed (way) too many emissions due to Arcadis N.V. and Global B.V. also being in the scope of calculations. Therefore, 2023 and 2024 air emissions have been recalculated to only include emissions from ANL (NL010), as opposed to also including NL100 (Arcadis N.V.) and NL030 (Arcadis Global B.V.) emissions. The updated emissions for 2023 are also included in this report, to prevent us from attributing too much emission reduction to plane travel. A more detailed overview of the changes in emissions can be found in Table 1.

Table 1 Flight emissions correction 2023

Flight distance class		Reported CO ₂ emission 2023	Corrected CO ₂ emission 2023
		[ton/yr]	[ton/yr]
< 700 km (short haul)		25,1	43,6
700 - 2,500 km (medium haul)		84,9	105,2
> 2,500 km (long haul)		719,3	424,9
Total (with SAF-reduction)		664,3	408,8
	subtotal	829,3	573,8
	SAF-reduction	124,5	165,0

- At the time of the writing of this report, the most recent SAF (Sustainable Aviation Fuel) has not been provided yet. Therefore, we have been unable to incorporate this emission reduction in the emission inventory and this report. This SAF report is expected mid June 2025. This means the reported flight emissions in this report are an overestimate, and will be slightly lower in reality. Depending on how much emissions were reduced due to the purchasing of SAF in 2024, this report will be updated and republished. In any case, the attributing emission inventory will be updated accordingly.
- Declared transport kilometers for public transport are not included. The internal controller has indicated that, due to
 the use of the NS Business Card (NSBC), which every employee possesses, the number of declared public
 transport kilometers is negligible. Therefore, this report only uses the registered trips via the NSBC.

2 ARCADIS NETHERLANDS B.V. 2024 CARBON FOOTPRINT

ANL's CO₂-emission equaled 2.579,0 ton in 2024. Compared to the recalculated emissions of 2023, the previous reporting year (2.708,4 ton CO₂³), this entails a reduction of -4.8%. Compared to the baseline year 2019, it entails a reduction of -42,9%, and compared to the first year of measurement 2010 it means a reduction of -71,7%. These numbers are significant.

In 2024, the decrease in CO₂-emissions can be explained by various factors, amongst which the electrification of our fleet of company owned vehicles, increased attention for and awareness of the need to reduce travel, most notably plane travel, and the implementation of carbon budgets. These and other factors explaining the emission increases/decreases will be further elaborated upon in the rest of this report, and Chapter 6 (Reduction Measures and Progress) specifically.

Figure 2Below shows the distribution of ANL's emissions across different activities in 2024, followed by Figure 3 which provides insight into the distribution of CO₂ emissions in 2024 per scope.

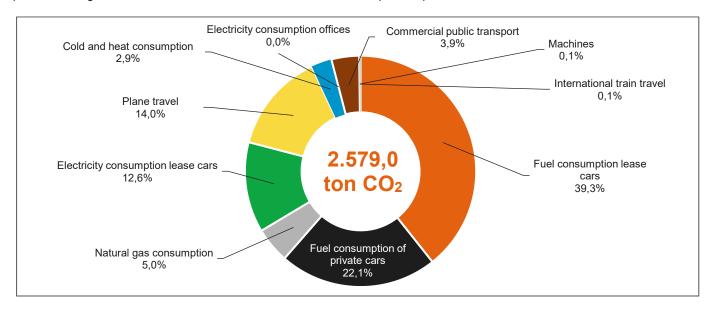


Figure 2: CO2-emission ANL 2024 per activity/emission source

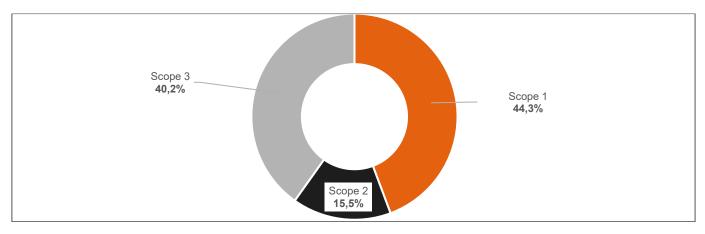


Figure 3: CO₂-emissions ANL 2024 per scope

8

³In the previous 2023 Carbon footprint report the total emissions were 2.963,9 tons of CO₂ After gaining more insights into our flight data these emissions have been corrected to only include the relevant flight emissions for Arcadis Nederland B.V making the total 2023 emissions 2.708 tons of CO₂.

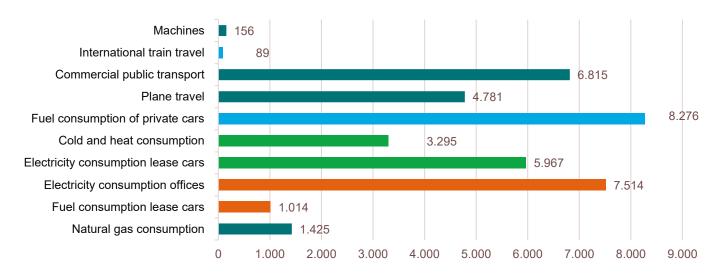
The figures (Figure 2 and 3) indicate that the majority of ANL's emissions come from fossil-fueled company cars (39,3%). Along with electric company cars (12,6% of total emissions), ANL's company owned vehicles account for just over half (52,0%) of the total emissions. This marks a change from previous reporting years, where fossil-fueled company cars by themselves consistently accounted for more than half of the total CO₂ emissions. This change can be attributed to the rapid electrification of ANL's fleet, 66% of ANL's fleet being fully electric in 2024 (+16% compared to 2023). Besides company cars, pivate car travel is the largest source of emissions in 2024 (22,1%), followed by air travel (14,0%).

Evidently, mobility continues to be the largest contributor to ANL's emissions. Since we started monitoring, mobility has always accounted for approximately 90% of total emissions. In total, 92,0% of ANL's CO₂ emissions in 2024 were related to mobility, of which 78,0% comes from lease cars, private cars, public transport and international train travel and 14,0% comes from air travel.

The remaining 8% of emissions come from building-related natural gas consumption (5,0%), building-related heat and cold consumption (2,9%) and finally a very small (neglicible) amount of emissions (0,1%) resulting from fuel consumption of some machines in Beilen that are mainly used for railway work.

Table 2 below shows the CO₂ emissions categorized by ANL's various activities, sorted by size and scope. Mobility emissions are highlighted in blue, and building-related consumption in pink. The last column displays the energy consumption per FTE (2041,4 FTE in 2024 – refer to 1.3 Principles for how this number was calculated).

ANL's CO₂-emissions decreased from 1,4 ton CO₂/FTE in 2023 to 1,3 ton CO₂/FTE in 2024: a decrease of -0,1 ton/FTE (-100 kg CO₂/FTE in one year).


Table 2: CO₂-emissions in 2024 per activity

Company Emissions (ANL 2024)	Scope	Total CO ₂ - emission [ton/year]	Relative share [%]	CO ₂ per FTE [ton/FTE]
Emissions sorted by size				
Fuel consumption lease cars	Scope 1	1.014,1	39,3%	0,5
Fuel consumption of private cars	Scope 3	570,2	22,1%	0,3
Natural gas consumption	Scope 1	128,6	5,0%	0,1
Electricity consumption lease cars	Scope 2	326,2	12,6%	0,2
Plane travel	Scope 3	361,1	14,0%	0,2
Cold and heat consumption	Scope 2	74,4	2,9%	0,0
Electricity consumption offices	Scope 2	-	0,0%	-
Commercial public transport	Scope 3	99,6	3,9%	0,0
Machines	Scope 3	2,9	0,1%	0,0
International train travel	Scope 3	2,0	0,1%	0,0
Emissions EnPi's				
Overall	Scope 1-3	2.579,0	100,0%	1,3
Building related CO ₂ emissions	Scope 1-2	205,9	8,0%	0,1
CO ₂ emissions related to travel (excl. plane)	Scope 1-3	2.012,1	78,0%	1,0
CO ₂ emissions related to plane travel	Scope 3	361,1	14,0%	0,2
Emissions sorted by scope				
Scope 1	Scope 1	1.142,7	44,3%	0,6
Scope 2	Scope 2	400,5	15,5%	0,2
Scope 3	Scope 3	1.035,8	40,2%	0,5
Total	-	2.579.0	100,0%	1,3

All our activities are measured in ton CO2 as well as GJp. For a more detailed elaboration on our energy streams and energy use analysis, please see the energy and emission inventory that accompanies this document. The figure and

table below provides insight in our energy streams: most energy is used for plane travel, followed by electricity consumption of our offices and commercial public transport.

Emissions		GJ [GJ/year]	[%]	GJ relative [GJ/fte]
Emissions sorted by size				
Fuel consumption lease cars	Scope 1	1.014,1	2,6%	0,5
Electricity consumption offices	Scope 2	7.514,2	19,1%	3,7
Fuel consumption of private cars	Scope 3	8.276,2	21,0%	4,1
International train travel	Scope 3	89,1	0,2%	0,0
Natural gas consumption	Scope 1	1.425,4	3,6%	0,7
Plane travel	Scope 3	4.781,4	12,2%	2,3
Cold and heat consumption	Scope 2	3.295,0	8,4%	1,6
Electricity consumption lease cars	Scope 2	5.966,9	15,2%	2,9
Machines	Scope 3	155,6	0,4%	0,1
Commercial public transport	Scope 3	6.815,2	17,3%	3,3
Energy EnPi's				
Overall		39.333,0	100%	19,27
Energy consumption related to plane travel		4.781,4	12%	2,34
Building related energy consumption		12.390,2	32%	6,07
Energy consumption related to business travel (excl. plane)		22.161,4	56%	10,86
Energy consumption sorted by scope				
Scope 1		2.439,5	6%	1,20
Scope 2		16.776,1	43%	8,22
Scope 3		20.117,4	51%	9,85
Total		39.333,0	100%	19,27

3 DIRECT CO₂-EMISSIONS: SCOPE 1

This chapter outlines the direct CO₂ emissions (Scope 1) of ANL in 2024. In 2024, Scope 1 emissions amounted to **1.142,7** tons of CO₂, accounting for **44,3%** of ANL's total emissions. These Scope 1 emissions are classified as direct emissions because the consumption and emissions occur at the same location (where combustion takes place). At ANL, Scope 1 emissions originate from natural gas consumption (section 3.1) and fossil fuel consumption by lease cars (section 3.2).

3.1 Emissions from building-related natural gas consumption

In 2024, ANL used natural gas for building heating at 7 out of 14 locations. The 'Kleine Koppel' office (OverMorgen), which also used natural gas in previous years, was divested in early February 2024.

In 2024, the total natural gas consumption of these 7 locations combined was 60.243.3 m³ natural gas. This corresponds to 128,6 tons of CO₂ and represents 5,0% of the total CO₂ emissions in 2024. Figure 4 below shows an overview of the emissions related to the natural gas consumption of ANL's natural gas consuming locations in 2024.

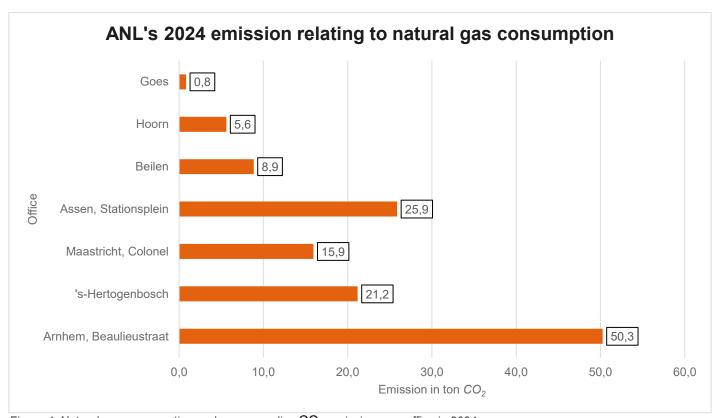


Figure 4: Natural gas consumption and corresponding CO₂-emissions per office in 2024.

Of the 24.586,0 m² of office space that ANL used in 2024, 9.474,0 m² (38,5%) was heated using natural gas. There are also a few small (storage) locations that are not heated. Our old office on Beaulieustraat in Arnhem consumed the most gas of all locations (as can be seen in Figure 4). Partly for this reason, we moved to a new, more sustainable office in September 2024. Additionally, the OverMorgen office (Kleine Koppel) was divested early in 2024 (february). By divesting

this building and moving to a more energy-efficient building in Arnhem, ANL saved energy and CO₂ emissions in 2024 compared to 2023 and previous years.

Figure 5 provides insight into the emissions related to natural gas consumption over time, starting from the first base year 2010, the current reference year (2019), the previous reporting year (2023), and the current reporting year (2024).

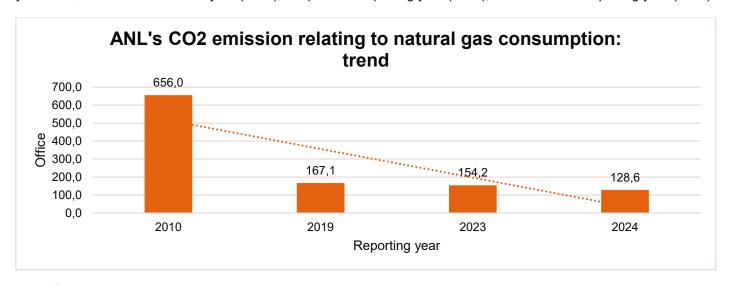
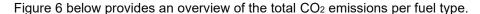


Figure 5: ANL's CO2-emissions relating to natural gas consumption from 2019-2024

Table 3 displays the floor area, natural gas consumption and corresponding CO₂-emissions per office that consumes natural gas.

Table 3: Relative natural gas consumption in 2024

Office	Floor area [m2]	Natural gas consumption 2024 [m3]	Conversion factor [g CO ₂ / m3]	CO₂ emission [ton/ year]
Arnhem, Beaulieustraat	3.831,0	23.553,0	2.079	50,3
's-Hertogenbosch	2.486,0	9.931,1	2.079	21,2
Maastricht, Colonel	679,0	7.473,6	2.079	15,9
Assen, Stationsplein	716,0	12.124,9	2.079	25,9
Beilen	1.204,0	4.148,0	2.079	8,9
Hoorn	446,0	2.625,8	2.079	5,6
Goes	112,0	386,9	2.079	0,8
Total	9.474,0	60.243,3		128,6


3.2 Emissions from fossil fueled company owned vehicles (lease cars)

The fossil fuel consumption of company lease cars falls under ANL's direct (scope 1) emissions. These lease cars are reported in this section, while the consumption of electric lease cars is described in Chapter 4 (Scope 2).

In 2024, ANL's fossil-fueled company-owned vehicles fleet consisted of **182** fossil lease cars (compared to 263 in 2023: a reduction of **-31%** in just one year). Together, these fossil-fueled company-owned vehicles drove **5.078.725,5 km** for business purposes in 2024, consuming a total of **422.174,8 liters** of fuel.

This consumption and the associated emissions are relatively directly influenced by ANL, making the minimization of lease cars, driven kilometers and the electrification of the remaining lease fleet one of the very most significant reduction measures. These measures remain a priority, as outlined in the Energy Policy Plans for 2021-2023 and 2024-2026. In 2024, similar to previous years, this measure resulted in a significant and immediately visible reduction.

In 2024, emissions related to fossil lease cars amounted to 1.014,1 tons of CO₂, corresponding to 39,3% of the total footprint.

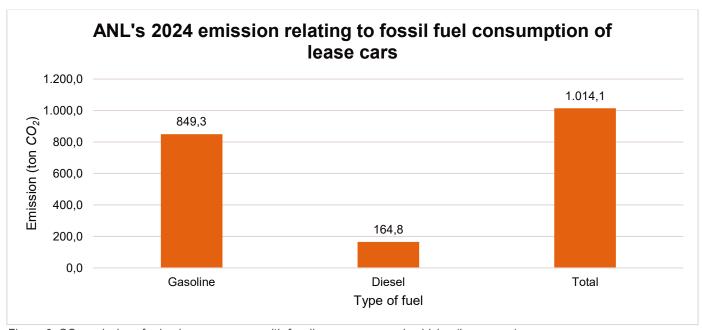


Figure 6: CO₂-emissions for business purposes with fossil company owned vehicles (lease cars)

Table 4 below displays the fuel consumption and corresponding emissions for travel with fossil fueled company owned vehicles for business purposes (commuting and business travel) per type of fossil fuel.

Table 4: CO₂-emission of fossil fuel use by company owned vehicles in 2024

Fuel type	Distance travelled [km]	Amount of fuel [liter]	Conversion factor [g CO ₂ / liter]	CO ₂ [ton/ year]
Gasoline	4.163.395,9	373.280,6	3.073	849,3
Diesel	915.329,6	48.894,3	3.468	164,8
Total	5.078.725,5	422.174,8		1.014,1

Figure 7 below indicates the trend in emission reduction between 2019 and 2024. It is evident that the rapid electrification of our company owned vehicle fleet is delivering results in terms of emission reduction due to the elimination of fossil fuels

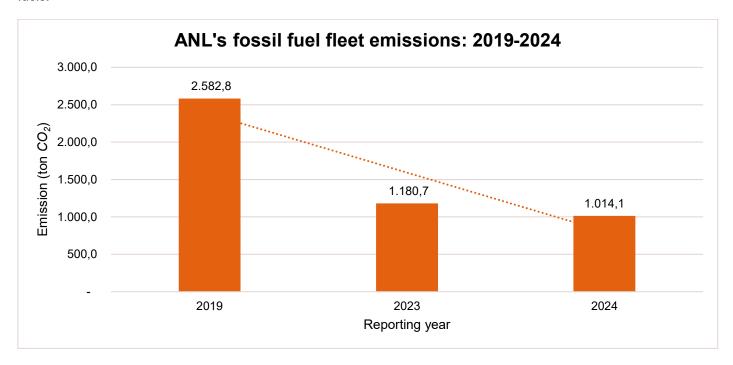
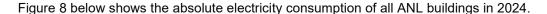


Figure 7: ANL's decrease in fossil fuel emissions from company owned vehicles between 2019 and 2024.

4 INDIRECT CO₂-EMISSIONS FROM ENERGY GENERATON: SCOPE 2

This chapter presents the indirect CO₂ emissions from energy generation (Scope 2) for ANL in 2024. For ANL, this includes emissions caused by the electricity consumption of buildings (4.1), the electricity consumption of electric lease cars (4.2), and heating and cooling consumption (4.3). These aspects are further explained below.

In total, Scope 2 accounted for 400,5 tons of CO2 in 2024, representing 15,5% of ANL's total emissions.


4.1 Emissions from building-related electricity consumption

In 2024, Arcadis operated a total of 14 buildings. For all buildings, green electricity was purchased through Guarantees of Origin (GvOs), which has been coordinated by Arcadis Global B.V. since 2021. This means that this electricity was emission-free (0,0 tons of CO₂).

Within ANL offices, electricity is primarily used for regulating the indoor climate (cooling, air conditioning, and ventilation), charging electric vehicles, and lighting the buildings. Naturally, the equipment and devices in use (mainly monitors and laptops) also contribute to electricity consumption. This consumption is assessed annually through ANL's energy consumption analysis.

In 2024, the total amount of green electricity purchased across all ANL locations amounted to 1.190.448,2 kWh. In addition, 98.389,0 kWh of green electricity was generated by the company's own solar panels in 2024, part of which was consumed by ANL locations, while the remainder was fed back into the grid. However, this may not be counted as a reduction in the carbon footprint according to the CO₂-PL requirements.

Among all the offices, the Amersfoort Eempolis office accounted for the highest electricity consumption (45,1%), followed by 's-Hertogenbosch (18,7%) and Arnhem, Beaulieustraat (12,7%). Amersfoort Eempolis is by far the largest ANL office and operates its own WKO (thermal energy storage) system, which consumes a significant amount of electricity.

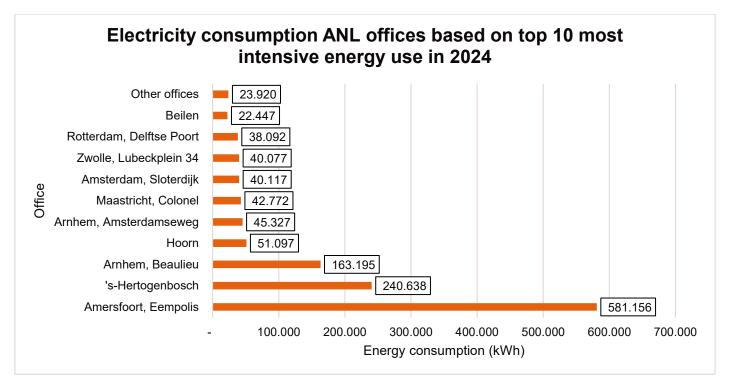


Figure 8: Electricity use of most consuming offices in 2024.

Table	5. Tor	10 offi	ces consu	mina the	most	electricity	ı in	2024

Office location	Floor area [m²]	Electricity use [kWh]	Conversion factor [g CO ₂ / kWh)	CO ₂ emission [ton/ year]
Amersfoort, Eempolis	7.733,0	581.156,0	0,0	0,0
's-Hertogenbosch	2.486,0	240.638,0	0,0	0,0
Arnhem, Beaulieu	3.831,0	163.195,0		
Hoorn	446,0	51.096,8	0,0	0,0
Arnhem, Amsterdamseweg	1.665,0	45.326,7	0,0	0,0
Maastricht, Colonel	679,0	42.771,6	0,0	0,0
Amsterdam, Sloterdijk	963,0	40.117,3	0,0	0,0
Zwolle, Lubeckplein 34	900,0	40.076,7	0,0	0,0
Rotterdam, Delftse Poort	3.467,0	38.092,1	0,0	0,0
Beilen	1.204,0	22.447,0	0,0	0,0
Other offices	1.212,0	23.920,0	0,0	0,0
Total	24.586,0	1.347.249	0,0	0,0

4.2 Emissions from electricity consumption by company owned vehicles

Besides fossil fueled company owned vehicles, ANL has an increasingly growing amount of electric vehicles in their fleet. At the end of 2024 (December), two-thirds of our fleet (66%) is fully electric. Arcadis Global aims to have a fully electric fleet worldwide by 2030. As Arcadis Nederland B.V. (ANL), we plan to achieve this by 2028.

This measure further reduces CO₂emissions in Scope 1, but introduces new emissions in Scope 2. In 2024, **4.890.276,0** km were driven for business purposes with **358 fully (100%) electric lease cars**. Compared to the previous year in 2023 where ANL had 308 EV's in their fleet, this means an increase of **+16,2%** EV's in just one year. These electric lease cars used **1.642,417,7 kWh** of electricity in 2024. Since the source of this electricity is unknown, we must use the emission factor for grey electricity according to the CO₂ Performance Ladder. This equates to a CO₂ emission of **326,2** tons of CO₂ in 2024, representing **12,6%** of ANL's total emissions in 2024. Figure 9 below indicates the trend in the increase in Scope 2 related emissions due to the electrification of our company owned vehicles.

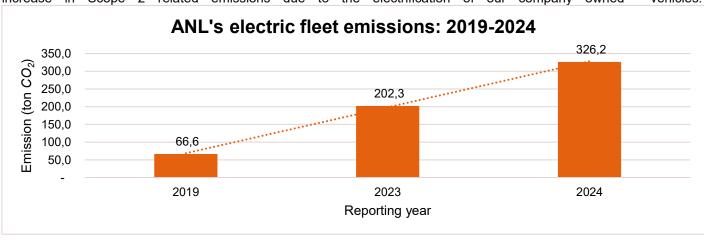


Figure 9: ANL's increase in emissions from electric company owned vehicles between 2019 and 2024.

4.3 Emissions from heat and cold consumption

The offices at Zwolle Lubeckplein, Amsterdam Sloterdijk, and Rotterdam Delftse Poort purchase district heating for the heating of their buildings. At the Amersfoort location, heating and cooling are generated via a thermal energy storage system (WKO). In previous years, the associated consumption of the WKO was included in the building's electricity usage. However, because the WKO system produces heating and cooling for which data has been made available for 2024, in this report the emissions for the WKO are calculated based on actual heat and cold output. This leads to an increase in emission compared to the previous year when electricity was used to calculate these emissions.

In 2024, the CO₂ emissions resulting from purchased heating and cooling amounted to **74,4 tons of** CO₂. This represents **2,9%** of ANL's total CO₂ emissions in 2024. Figure 10 provides an overview of the CO₂ emissions in 2024 caused by heating and cooling consumption from the four locations that use this type of energy for their heating and cooling demand (besides electricity).

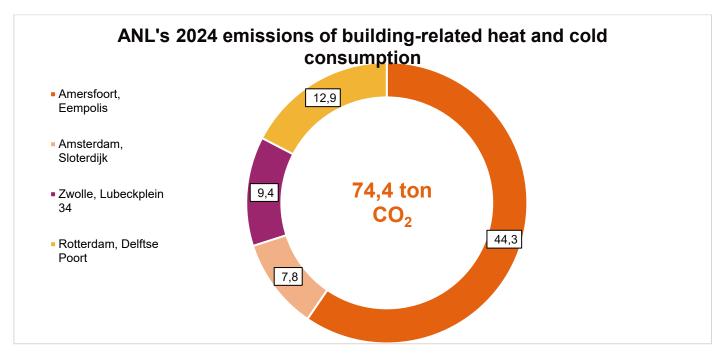


Figure 10: CO₂-emission from heat and cold consumption in 2024.

Table 6 displays the CO₂-emissions per office that uses heat/cold for building heating/cooling.

Table 6: CO₂-emissions of purchased/generated heat and cold in 2024

Location	Type of heat/cold	Volume (GJ/kWh)	Conversion factor [g CO ₂ /eenheid]	CO₂ [ton/ jaar]
Amersfoort, Eempolis	WKO (Cold and Heat production)	1.768	337	44,3
Amsterdam, Sloterdijk	District heating	312	25.370	7,8
Zwolle, Lubeckplein 34	District heating	374	25.370	9,4
Rotterdam, Delftse Poort	District heating	516	25.370	12,9
Total		2.968		74,4

5 OTHER INDIRECT CO2-EMISSIONS: SCOPE 3

This chapter presents the other indirect CO₂ emissions (Scope 3) of ANL in 2024. For ANL, this includes emissions caused by commercial travel (business trips and commuting) using private cars (5.1), air travel (5.2), domestic public transport (5.3), international train travel (5.4), and finally, a small number of machines at the storage location in Beilen (5.5). New since this report are Other Influenceable Emissions (Dutch: Overige Beïnvloedbare Emissies) which are in scope since the new Handbook 4.0 according to which we aspire to certify later this year (2025).

In total, Scope 3 emissions in 2024 amounted to 1.035,8 tons of CO₂, accounting for approximately 40,2% of ANL's total emissions.

5.1 Emissions from private cars

As previously mentioned, the CO₂ emissions from ANL's business travel on the road are caused by private cars, shared cars, and lease cars. The lease cars have already been described in Chapter 3.2 (fossil) and 4.2 (electric), and the shared cars (Greenwheels and taxi's) will be reported under public transport later in this chapter (5.3). This section reports the amount of CO₂ emissions caused by private cars.

The total CO_2 emissions caused by fuel consumption from business travel using private cars amounted to **570,2 tons**, representing **22,1%** of ANL's total footprint in 2024. The majority of these emissions were caused by gasoline cars (**77,4%**), followed by diesel cars (**11,0%**) and unknown fuel (**7,4%**).

In 2024, a total of 3.043.491,8 km were driven (declared kilometers) for work purposes, of which 1.016.382.4 km were for commuting and 2.027.109,4 km were for business travel. The table below (Table 7) and Figure 11 illustrate the fuel consumption and corresponding emissions per fuel type for private cars in 2024.

Table 7: CO₂-emissions of private cars 2024

Type of fuel	Business travel [km/ year]	Commuting travel [km/year]	Conversion factor [g CO ₂ / km]	Total CO ₂ [ton/ jaar]
Gasoline	1.392.397	771.573	204	441,4
Biodiesel	3.098	5.452	144	1,2
Diesel	264.431	85.424	180	63,0
LPG	48.626	3.120	152	7,9
Electricity	134.939	53.366	67	12,6
Green Electricity	13.895	13.388	3	0,1
Ethanol	30.092	6.022	55	2,0
⁴ Unknown	139.631	78.038	193	42,0
Total	2.027.109	1.016.382		570,2

⁴ Some emissions data may remain unknown due to challenges in data collection and reporting processes. A common issue arises when forms within systems like Oracle are not filled out accurately or are left incomplete.

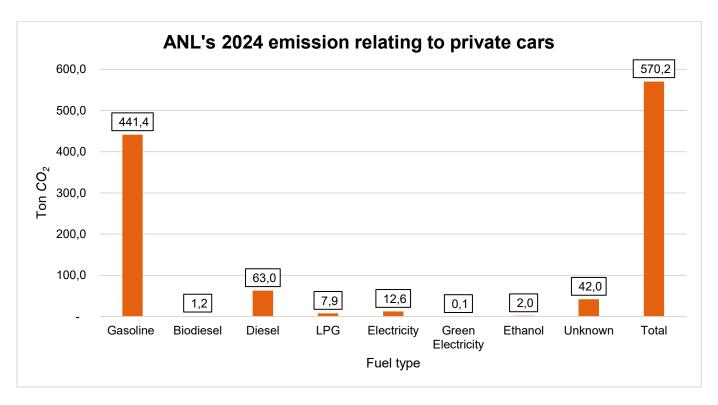


Figure 11: CO₂-emission of fuel use by private cars in 2024.

5.2 Emissions from plane travel

Although ANL enforces strict flight policies (such as digital meetings as the standard, no flights under 700 km, and no indirect flights for cheaper prices—'creative ticketing'), air travel is still used, particularly for covering long distances. Some of these flights are unavoidable, especially as we have increasingly moved towards global management with more international meetings. Since early 2018, Arcadis has been a partner in the KLM-Air France Corporate Sustainable Aviation Fuel (SAF) program. Through this program, all KLM-Air France flights use SAF, which helps to reduce flight emissions. Reducing our flight-related emissions has been a key focus in previous and current sustainability plans (such as the EEPP 2024-2026), and the measures we have implemented appear to be having a positive impact with -37% less distance traveled in 2024 compared to 2023, corresponding with -12% emission reduction between 2024 and 2023. This section reports the amount of CO₂ emissions caused by these flights.

The total emissions from business air travel amounted to 361,1 tons of CO₂ in 2024, representing 14,0% of ANL's total footprint in 2024. At the time of writing this report, the savings related to the purchase of SAF are unfortunately not available yet; this report is expected to be released and available in mid-June. As a result, the actual emissions will be slightly lower in reality. Depending on how much lower, this report might need to be updated accordingly. Table 8 shows the distances flown and the associated emissions in 2024 per flight distance class and in total.

Tahal 8. COa	-emission	relating	to nlane	travel in 2024	l

Flight distance class	Travel distance	Conversion factor	CO ₂
Short-haul < 700 km	[km/ year] 131.027,2	[g CO ₂ / km]	[ton/ year]
Medium-haul 700 – 2.500 km	464.285,8	172	79,9
Long-haul > 2.500 km	1.595.763,9	157	250,5
SAF-reduction	Not available yet during the writing of this report (expected mid June 2025)		
Total	2.191.076,9		361,1

Figure 12 illustrates the information provided in Table 8. Additionally, Figure 13 provides insight in the reduction of our travel-related emissions since 2019.

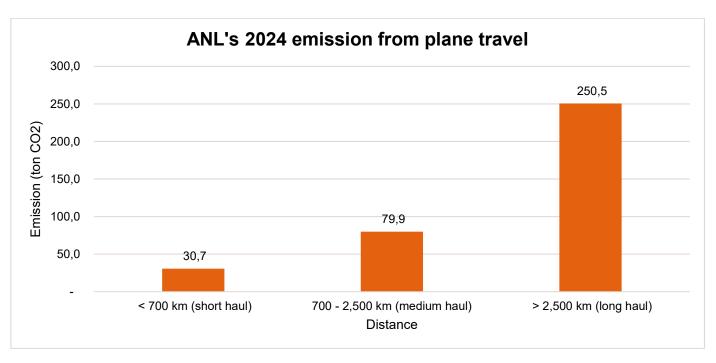


Figure 12: CO2-emission from plane travel in 2024.

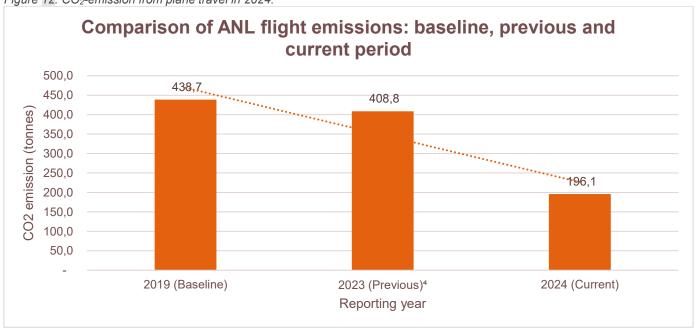


Figure 11: CO₂-emission from plane travel in the period 2019-2024.⁵

⁵ As outlined in Chapter 1.4, a correction was made to the 2023 flight emissions. For further details, refer to Table 1.

5.3 Emissions from domestic public transport

ANL actively encourages the use of public transport for business and commuting travel. In late 2022 (October), the WERK policy was introduced, which includes new rules and opportunities for reducing and making mobility more sustainable. For example, since then, the NS Business Card for ANL employees can also be used on weekends to help reduce (fossil-fueled) road traffic in private life as well.

The total CO_2 emissions caused by the fuel consumption of public transport amounted to 99,6 tons of CO_2 in 2024. This represents approximately 3,9% of ANL's total footprint in 2024. Weekend travel is not included in this calculation, as it is assumed to involve private travel. Furthermore, this section only covers domestic train travel; international train travel is addressed in the following section (5.4).

Although the vast majority (92,5%) of the total distance traveled by public transport was completed by train, the largest share of public transport emissions came from bus, tram, and metro travel (49,1%), followed by Greenwheels (32,4%), and then train travel (17,5%). This is because of the relatively low emissions associated with train travel.

In 2024, a total of 11.702.803,2 km was traveled by all ANL employees (including hired staff) using public transport, divided among train rides, bus/tram/metro rides, taxi rides, and kilometers driven in shared cars (Greenwheels). Table 9 shows public transport usage by type.

Table 9: CO2-emission of public transport in 2024

Type of public transport	Travel distance [km]year]	Conversion factor [g CO ₂ / km]	CO ₂ [ton/year]
Bus-tram-metro	707.057,1	75	48,9
GreenWheels	167.924,2	32,4	
Train	10.823.270,0	3	17,4
Taxi	4.551,9	193	0,9
Total	11.702.803,2		99,6

Figure 14 provides an overview of the total CO₂-emisson per type of public transport.

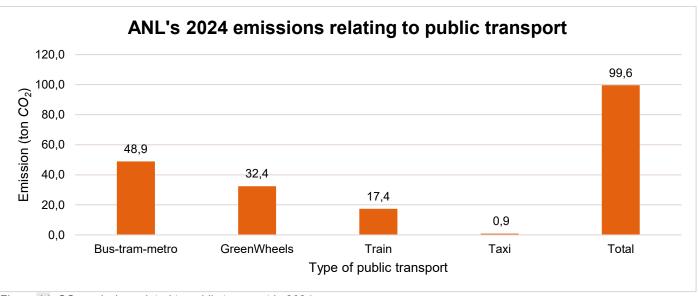


Figure 14: CO₂-emission related to public transport in 2024.

5.4 Emissions from international train travel

At ANL, the use of international public transport for business travel is also actively encouraged, particularly as an alternative to air travel. Trips under 700 km are made by train instead of by plane whenever possible. In 2024, ANL employees traveled a total of 96.710 km by international train. This corresponds to 2,0 tons of CO₂ and accounts for approximately 0,1% of the total CO₂ emissions in 2024. This is a negligible amount of emissions.

5.5 Emissions from machines

At the office and storage location in Beilen, machines are present that consume diesel (HVO100), gasoline (Aspen), and electricity. In 2024, the total consumption of diesel fuel (HVO100) and gasoline (Aspen) was once again analyzed to gain insight. The total CO2 emissions caused by the fuel consumption of these machines amounted to 2,9 tons, which is 0,1% of ANL's total footprint in 2024. These emissions are related to machines used at third-party locations, by Arcadis on project sites (outside the facility), or those rented out. As such, these emissions are reported under Scope 3 in accordance with the Operational Control Approach.

In 2024, a total of 4.364,0 liters of fuel was consumed at the Beilen location, of which 3.839,0 liters were HVO100 (1,3 tons of CO₂) and 525,0 liters were Aspen (1,6 tons of CO₂). Table 10 provides an overview of the emissions from the machines by fuel type.

Table 10: CO₂-emissions from machines in 2024

Fuel	Amount [liter/year]	Conversion factor [g CO ₂ / liter]	CO ₂ [ton/ year]
Biodiesel (HVO100)	3.839	347	1,3
Gasoline (Aspen)	525	3.073	1,6
Total	4.364	i.	2,9

5.6 Other Influenceable Emissions (OIE's)

In the Handbook 4.0 of the CO₂ Performance Ladder, the term "Other Influencable Emissions", in short OIE's, (Dutch: "Overige Beïnvloedbare Emissies" or OBE's) is used to refer to emissions that do not fall directly under Scope 1 or Scope 2 but over which an organization can exert influence. Including these emissions helps create a complete picture of an organization's total climate impact. By identifying, measuring, and reducing these emissions, an organization can go beyond just direct and energy-related emissions, contributing to sustainable change throughout the entire value chain.

Our Scope 1 and 2 non-GHG emissions are not material. We have determined this based on our OIE's. Our Scope 3 non-GHG emissions/OCE's are expected to be material for our project-related work, however, we do not have this data readily available yet. For now, this insight is limited to our internal operations.

Arcadis monitors such emissions through the Global reporting system of Sphera. For ANL this includes emission of methane (CH4) and nitrous oxide (N2O). Table 11 below provides insight in these emissions in 2024. They are measured in tons of CO₂.

Table 11: Other Influenceable Emissions in 2024

Type of OIE	Volume 2024	Measured	in
CH4		2,8	Ton CO ₂
N2O		3,5	Ton CO ₂
Total		6,3	Ton CO ₂

6 Reduction measures and progress

During the reporting year 2024, the Energy & Emission Policy Plan (EEPP) was in effect, outlining the planned measures for the 2023-2026 policy period. This chapter briefly explains these measures per scope and describes the intended and achieved reductions.

As can be deduced from the image below, according to our EEPP 24-26, we calculated 2.800 CO₂-emissions for 2024 in a realistic scenario, 2.700 ton CO₂ in an optimistic scenario (see Figure 15 below). With an emission of 2.579,0 ton CO₂ emission, we have surpassed our goal and ambition (see also Table 12 below). This is due to active efforts, as well as an overcalculation of emissions in 2023 and before due to a miscalculation of flight emissions provided to ANL by Arcadis Global B.V. (see Principles). In the rest of this report, we have compared our emissions with the also recalculated emissions from 2023 to prevent us from comparing skewed results.

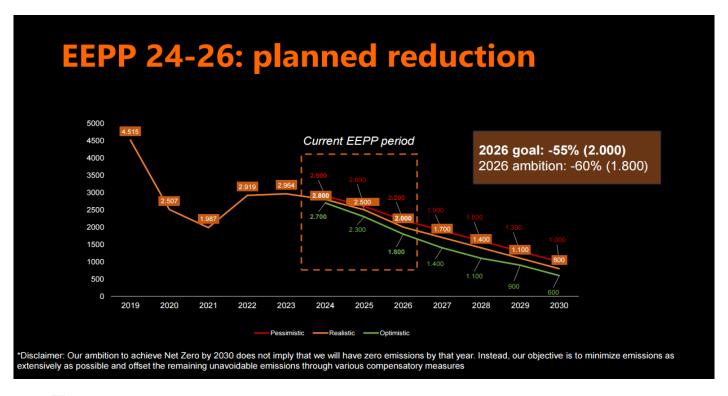


Figure 15: Planned CO2-emission reduction 2024-2030 according to the EEPP 24-26.

Table 12: Planned and realized reduction in 2024 compared to 2019: progress monitoring.

Scope	Planned emission reduction in 2024 compared to 2019	Actual emission reduction in 2024 compared to 2019
1	-60,0%	-58,4%
2	157,5%	157,9%
3	-19,2%	-35,6%
Total	-38,0%	-42,9%

As can be deducted from the table above, we have surpassed our planned reduction in 2024 with an additional 4,9% reduction (38,0% planned, 42,9% realized). This is mainly explained by increased awareness relating to plane travel (scope 3 reduction), the implementation of carbon budgets and the electrification of our fleet of company owned vehicles.

Appendix A: LITERATURE

Stichting Klimaatvriendelijk Aanbesteden en Ondernemen (SKAO) (2020), Handboek CO₂-Prestatieladder URL; https://media.skao.nl/content/ska/skadownload/CO₂-Prestatieladder Handboek 3.1 22-6-2020.pdf.

Stichting Klimaatvriendelijk Aanbesteden en Ondernemen (SKAO) (2025), Handboek 4.0 CO₂-Prestatieladder *URL*: https://www.co2-prestatieladder.nl/documenten/download-versie-4-0-trede-3/

Ecorys Nederland (2012), Privégebruik auto van de zaak.

Opdrachtgever: Vereniging van Nederlandse Autoleasemaatschappijen (VNA).

KNMI (2022): Datagegevens van het weer in Nederland,

URL: http://www.knmi.nl/klimatologie..

Nederlands Normalisatie-instituut (NEN) (2006a). NEN ISO 14064-1:2006, Greenhouse gases – Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals.

Nederlands Normalisatie-instituut (NEN) (2006b). NEN ISO 14064-2:2006, Greenhouse gases – Part 2: Specification with guidance to the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancement.

Nederlands Normalisatie-instituut (NEN) (2006c). NEN ISO 14064-3:2006, Greenhouse gases – Part 3: Specification with guidance for the validation and verification of greenhouse gas assertions.

Nederlands Normalisatie-instituut (NEN)

World Resources Institute & World Business Council for Sustainable Development (WRI & WBCSD) (2004). The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard.

Appendix B: FURTHER ELABORATION ON METHODS AND PRINCIPLES

This appendix outlines the assumptions used for determining operational control, obtaining energy data for buildings, fuel consumption for business travel (company cars, private cars, and flights), the number of employees, and the floor area of the buildings.

Operational Control

The following four criteria were used to determine operational control over the various business units:

- 1. No operating company (only financial, no activities, and therefore no CO₂).
- 2. No legal entity (under IFRS, no legal entity and therefore no control).
- 3. No personnel (no ANL employees are employed).
- 4. No decisive influence (no significant interest or decision-making power in the business unit).

Based on the above criteria, ANL defines the entity as: **Arcadis Nederland BV, Chamber of Commerce 09036504, VAT NL006293700B13**.

Building Energy Data

The energy consumption of buildings is determined based on meter readings from invoices or manual readings of energy meters. If annual or monthly invoices are missing, or if the metered period does not align with the calendar year, annual consumption is calculated.

The assumptions for this calculation are as follows:

- Natural gas consumption and heat supplied are calculated based on heating degree days, using a reference temperature of 18°C and average daily temperature.
- For example, if the daily average temperature is 6.8°C, the number of heating degree days is 18 6.8 = 11.2.
- Electricity consumption is calculated based on the average daily electricity usage.
- For certain locations without invoices or reliable meter readings, natural gas and/or heat data are extrapolated based on previous data and heating degree days. For electricity consumption in storage facilities, missing data assumes 25 kWh/m².
- The solar panel output at the Arnhem and Den Bosch offices was incomplete due to an information system failure (since resolved). Solar output was calculated based on known performance and adjusted for the number of sunshine hours during the affected period.

Fuel Usage for Business Travel with Lease Cars

The number of lease cars for the reporting year is determined as the average of the number of lease cars on January 1st of the reporting year and January 1st of the following year (the year after the reporting year). The number of employees using lease cars is obtained from the personnel administration. Fuel data is retrieved through the online portals of the leasing companies (Arval and Alphabet).

Fuel purchased outside the fuel card system is included in the leasing companies' administration via expense claims. However, fuel purchased abroad for private trips cannot be claimed and is therefore not included in the fuel administration. The fuel cards are only valid within the Netherlands.

For calculating the fuel usage by lease cars, the following assumptions have been made:

- The number of private kilometers driven with a lease car is estimated at 7,500 km per person per year. This
 estimate is based on research conducted by Ecorys Nederland on behalf of the Association of Dutch Car Leasing
 Companies (VNA).
- To convert the kilometers driven into liters of fuel used, CO₂ emission factors for the average emissions per liter
 and per kilometer are used for the different fuel types. By dividing these values, the average number of kilometers
 per liter of fuel is calculated.
- Additionally, for hybrid cars, an average fuel consumption has been calculated based on various hybrid car models.
 The consumption is then determined according to the composition of the hybrid fleet (e.g., the average

consumption per liter for all types of the Toyota Prius has been calculated). Actual consumption data is sourced from the website www.ecotest.eu.

Fuel Usage for Business Travel with Private Cars

Fuel consumption for business travel using private cars is calculated based on mileage claims.

The kilometers driven in a reporting year are considered equal to the kilometers claimed in that reporting year. Data is collected annually in mid-February. Since it is possible to submit claims for the previous year after February, an overview of claims for the previous reporting year is also requested in February. The difference is included in the carbon footprint of the current reporting year.

Fuel Consumption for Business Air Travel

To calculate the number of flights and flight distances, data provided by VCK-travel is used. This information includes only the total flight distances for each trip. Since the CO₂ Performance Ladder uses CO₂ coefficients based on each start-stop distance, the trips are further manually broken down into individual start-stop distances. The distances are determined using information from www.travelmath.com.

Additionally, flight bookings are reviewed by cost centers, as some flights are booked on behalf of Arcadis Europe or Arcadis NV. These flights are not attributed to Arcadis Nederland (ANL) but are registered separately.

The calculation of the amount of CO₂ is based on the flight distances per ticket as provided by VCK-travel. These distances are determined in the same way as in previous reporting years.

Fuel Usage for Business Travel via Public Transport

To calculate the CO₂ emissions from business travel using public transport, data provided by NS (Dutch Railways) is used.

Using the NS Business Card, which every employee possesses, train travel kilometers are registered. Employees from OverMorgen record their public transport journeys using the Shuttle card.

Additionally, some trips are made using trams, buses, metros, Greenwheels, or other shared cars. These trips are also registered using the NS Business Card or Shuttle card. However, for tram, bus, and metro trips, only the cost of the trip is known. Based on these costs, an estimate of the kilometers traveled by tram, bus, or metro is made. The average cost per kilometer is estimated as follows:

- €0.295 for buses,
- €0.323 for trams, and
- €0.235 for metros.

(Source: "Basic Information on Public Transport Fares - MRDH").

Finally, all public transport kilometers traveled are multiplied by the percentage of Arcadis employees seconded in that reporting year.

Fuel Usage for International Train Travel

To calculate the CO₂ emissions from business travel via international train journeys, data provided by FCM-travel and ThrustCarbon is used.

Fuel Usage for Machinery

The amount of diesel and gasoline used for machinery at the Beilen site is obtained from invoices specifying the quantities. The electricity consumed by these machines is already included in the site's electricity consumption.

Number of Employees

The number of employees in the reporting year is equal to the flow (average) over the reporting year. This flow is requested semi-annually from Arcadis' financial administration. The employee count is reported in the carbon footprint in line with other annual reports for Arcadis Nederland (ANL).

The number of employees in a reporting year includes:

- Employees with a formal employment contract, and
- · Temporary staff hired through secondment or staffing agencies.

Temporary staff are included in the employee count if their role is structural and they perform day-to-day operations indistinguishable from permanent employees. This applies when the temporary staff book their worked hours in ANL's regular time registration system. At the division level, temporary staff numbers are determined based on booked hours and are directly included in the workforce reporting figures.

Floor Areas of Buildings

The floor areas of buildings are expressed according to the NEN2580 methodology.

- VVO = Usable Floor Area;
- BVO = Gross Floor Area;
- NVO = Net Floor Area: internal area excluding fixed walls, voids, and glass line corrections.

Refer to Figure 16 for illustrations.

For calculating energy consumption or CO₂ emissions per square meter of floor area, the usable floor area (VVO) is used. For locations where the VVO value is not available, it is derived from the gross (BVO) or net floor area (NVO). This is based on a practical average value where the VVO is equal to 0.88 times the BVO or net floor area.

Bruto Vloeropper∨lak	Netto Vloeroppervlak	Gebruiksoppervlak	Verhuurbaar Vloeroppervlak	Gerealiseerd Nuttig Oppervlak	Functioneel Nuttig Oppervlak	Woon-/ Werkoppervlak	
(BVO)	(NVO)	(G0)	(VV0)	(GNO)	(FNO)	(WO)	
C			Ruimten voor Gebouwinstallaties				
			Verticaal verkeersoppervlak				
				Parkeerruimte			
				GNO	FNO	Rijwielstalling, buitenberging	
NVO BVO	NVO	GO		Hori	Horizontaal verkeeroppervlak		
			vvo	GNO		Sanitaire ruimten	
					FNO	Bergruimte	
						wo	
					Indelingsverlies		
					Seperatiewanden		
		Scheidingsconstr. Tuss		lingsconstr. Tussen gel	eb. functies		
Tarra	Tarra-oppervlak	Niet-toegankelijke leidingschachten					
		Statische bouwdelen					
		Glaslijncorrectie	vvo	Glaslijncorrectie			
		Ruimten lager dan 1,5 m					

Figure 16 Description of floor area according to the NEN 2580

Appendix C: OVERVIEW AND FULLFILMENT OF CO₂-PERFORMANCE LADDER REQUIREMENTS

Requirement	Fullfilment
a) Description of the reporting organization	See 'About Arcadis', final page
b) Responsible person	See title page and colophon
c) Reporting period	See paragraph 1.3
d) Documentation of organizational boundaries	See paragraph 1.2
e) Documentation of reporting boundaries, including criteria established by the organization to determine significant emissions	See paragraph 1.2
f) Direct CO ₂ emissions, in tons of CO ₂ -eq	See chapter 3 and paragraph 1.3
g) Description of how biogenic CO ₂ emissions and removals are treated in the report	N/A
h) If quantified, direct CO ₂ removals	N/A
i) Exclusions of GHG sources	See paragraph 1.3
j) Quantified indirect GHG emissions in tons of CO ₂ equivalents	See chapters 4 and 5
k) Reference year	See paragraph 1.3
I) Changes in the base year or other historical data	See paragraph 1.3
m) Calculation methods and explanation of the choices	See Appendix B
n) Explanation of changes compared to previously used calculation methods	See paragraph 1.3
o) Reference/documentation of emission factors (or removal factors)	See paragraph 1.3
p) Description of the impact of uncertainties on the accuracy of emission data (and removal data)	See paragraph 1.4
q) Description of uncertainty analysis and results	See paragraph 1.4
r) Statement that the report has been prepared in accordance with ISO 14064-1	See paragraph 1.3
s) Statement regarding the verification of the emission inventory, including the level of assurance	See paragraph 1.3
t) The equivalence factors used (GWP values), including the source. If the GWP values do not align with the most recent IPCC report, include the emission factors or database reference, along with the source.	N/A

Colofon

ARCADIS NETHERLANDS B.V. CARBON FOOTPRINT 2024 EXECUTIVE BOARD OF ARCADIS NETHERLANDS B.V. ARNHEM

AUTHOR

Hesther Ansems

PROJECT NUMBER

A00181.000001.0014

OUR REFERENCE

D10029678:438

DATE

June 20th, 2025

About Arcadis

Arcadis is a leading global design, engineering, and consultancy firm for natural and built assets. Founded in 1888 in the Netherlands, Arcadis has grown into a multinational company with a presence in over 70 countries, serving clients across diverse industries such as infrastructure, water, buildings, and the environment. The company's mission is to improve quality of life by creating sustainable and resilient solutions that address the challenges of urbanization, climate change, and resource scarcity.

At its core, Arcadis provides innovative solutions for the entire lifecycle of projects, from strategy and design to delivery and operations. The company is recognized for its expertise in areas such as environmental consulting, urban and regional development, water management, and infrastructure optimization. By combining its technical expertise with advanced digital tools and data-driven insights, Arcadis delivers tailored solutions that balance economic, social, and environmental needs.

Sustainability is a fundamental pillar of Arcadis' operations. The company is committed to helping clients reduce their environmental impact and achieve their sustainability goals, whether through carbon reduction strategies, renewable energy projects, or climate adaptation solutions. Internally, Arcadis sets ambitious goals to reduce its own carbon footprint and contribute to a more sustainable world.

With a diverse team of over 36,000 professionals worldwide, Arcadis fosters a culture of collaboration, innovation, and inclusion. By leveraging its global network and local expertise, the company works closely with clients to solve complex challenges and create lasting positive impacts on communities. From designing resilient cities to restoring ecosystems and ensuring safe water access, Arcadis is dedicated to shaping a better future for people and the planet.

www.arcadis.com

Arcadis Nederland B.V.

P.O. 264 6814 CM Arnhem Nederland

T +31 (0)88 4261 261

Arcadis. Improving quality of life

